Search courses 👉
Professional Course

Quantum Machine Learning

edX, Online
Length
9 weeks
Price
49 USD
Next course start
Start anytime See details
Delivery
Self-paced Online
Length
9 weeks
Price
49 USD
Next course start
Start anytime See details
Delivery
Self-paced Online
Visit this course's homepage on the provider's site to learn more or book!

Course description

Quantum Machine Learning

The pace of development in quantum computing mirrors the rapid advances made in machine learning and artificial intelligence. It is natural to ask whether quantum technologies could boost learning algorithms: this field of inquiry is called quantum-enhanced machine learning. The goal of this course is to show what benefits current and future quantum technologies can provide to machine learning, focusing on algorithms that are challenging with classical digital computers. We put a strong emphasis on implementing the protocols, using open source frameworks in Python. Prominent researchers in the field will give guest lectures to provide extra depth to each major topic.

In particular, we will address the following objectives:

  • Understand the basics of quantum states as a generalization of classical probability distributions, their evolution in closed and open systems, and measurements as a form of sampling. Describe elementary classical and quantum many-body systems.
  • Contrast quantum computing paradigms and implementations. Recognize the limitations of current and near-future quantum technologies and the kind of the tasks where they outperform or are expected to outperform classical computers. Explain variational circuits.
  • Describe and implement classical-quantum hybrid learning algorithms. Encode classical information in quantum systems. Perform discrete optimization in ensembles and unsupervised machine learning with different quantum computing paradigms. Sample quantum states for probabilistic models. Experiment with unusual kernel functions on quantum computers
  • Demonstrate coherent quantum machine learning protocols and estimate their resources requirements. Summarize quantum Fourier transformation, quantum phase estimation and quantum matrix, and implement these algorithms.

Upcoming start dates

1 start date available

Start anytime

  • Self-paced Online
  • Online
  • English

Who should attend?

Prerequisites

Linear algebra, complex numbers, calculus, intermediate Python. One of the following is highly recommended: statistical mechanics, quantum physics, machine learning.

Course delivery details

This course is offered through University of Toronto, a partner institute of EdX.

6-8 hours per week

Costs

  • Verified Track -$49
  • Audit Track - Free

Certification / Credits

What you'll learn

By the end of this course, students will be able to:

  • Distinguish between quantum computing paradigms relevant for machine learning
  • Assess expectations for quantum devices on various time scales
  • Identify opportunities in machine learning for using quantum resources
  • Implement learning algorithms on quantum computers in Python

Contact this provider

Contact course provider

Fill out your details to find out more about Quantum Machine Learning.

  Contact the provider

  Get more information

  Register your interest

Country *

reCAPTCHA logo This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
edX
141 Portland Street
02139 Cambridge Massachusetts

edX

edX For Business helps leading companies upskill their labor forces by making the world’s greatest educational resources available to learners across a wide variety of in-demand fields. edX For Business delivers high-quality corporate eLearning to train and engage your employees...

Read more and show all training delivered by this supplier

Ads