Course description
Probability and Statistics III: A Gentle Introduction to Statistics
This course provides an introduction to basic statistical concepts.
We begin by walking through a library of probability distributions, where we motivate their uses and go over their fundamental properties.These distributions include such important folks as the Bernoulli, binomial, geometric, Poisson, uniform, exponential, and normal distributions, just to name a few. Particular attention is paid to the normal distribution, because it leads to the Central Limit Theorem (the most-important mathematical result in the universe, actually), which enables us to make probability calculations for arbitrary averages and sums of random variables.
We then discuss elementary descriptive statistics and estimation methods, including unbiased estimation, maximum likelihood estimation, and the method of moments – you gotta love your MoM! Finally, we describe the t, X2, and F sampling distributions, which will prove to be useful in upcoming statistical applications.
Upcoming start dates
Who should attend?
Prerequisites
Learners will be expected to come in knowing a bit of set theory and basic calculus, as well as the material from the first two courses in this series (the Gentle Introduction to Probability and Random Variables courses). The prerequisite material is all available for you to access; and in any event, we will try to make the current course as self-contained as possible. In addition, this course will involve a bit of computer programming, so it would be nice to have at least a little experience in something like Excel and/or the R freeware statistical package.
Training content
Module 1: Distributions
- Lesson 1: Bernoulli and Binomial Distributions
- Lesson 2: Hypergeometric Distribution
- Lesson 3: Geometric and Negative Binomial Distributions
- Lesson 4: Poisson Distribution
- Lesson 5: Uniform, Exponential, and Friends
- Lesson 6: Other Continuous Distributions
- Lesson 7: Normal Distribution: Basics
- Lesson 8: Standard Normal Distribution
- Lesson 9: Sample Mean of Normals
- Lesson 10: The Central Limit Theorem + OPTIONAL Proof
- Lesson 11: Central Limit Theorem Examples
- Lesson 12 [OPTIONAL]: Extensions – Multivariate Normal Distribution
- Lesson 13 [OPTIONAL]: Extensions – Lognormal Distribution
- Lesson 14: Computer Stuff, including OPTIONAL Box-Muller Proof
Module 2: Getting Started with Statistics
- Lesson 1: Introduction to Descriptive Statistics
- Lesson 2: Summarizing Data
- Lesson 3: Candidate Distributions
- Lesson 4: Introduction to Estimation
- Lesson 5: Unbiased Estimation
- Lesson 6: Mean Squared Error
- Lesson 7: Maximum Likelihood Estimation
- Lesson 8: Trickier MLE Examples
- Lesson 9: Invariance Property of MLEs
- Lesson 10: Method of Moments Estimation
- Lesson 11: Sampling Distributions
Course delivery details
This course is offered through The Georgia Institute of Technology, a partner institute of EdX.
6-10 hours per week
Costs
- Verified Track -$199
- Audit Track - Free
Certification / Credits
What you'll learn
Upon completion of this course, learners will be able to:
- Review a library of discrete and continuous probability distributions
- Recognize the normal distribution and the Central Limit Theorem, and how they are applied in practice
- Recognize elementary methods of descriptive statistics
- Describe methods that can be used to estimate the unknown parameters of a distribution
- Identify statistical sampling distributions
Contact this provider
edX
edX For Business helps leading companies upskill their labor forces by making the world’s greatest educational resources available to learners across a wide variety of in-demand fields. edX For Business delivers high-quality corporate eLearning to train and engage your employees...