Course description
Big Data Analytics Using Spark
In data science, data is called "big" if it cannot fit into the memory of a single standard laptop or workstation.
The analysis of big datasets requires using a cluster of tens, hundreds or thousands of computers. Effectively using such clusters requires the use of distributed files systems, such as the Hadoop Distributed File System (HDFS) and corresponding computational models, such as Hadoop, MapReduce and Spark.
In this course, part of the Data Science MicroMasters program, you will learn what the bottlenecks are in massive parallel computation and how to use spark to minimize these bottlenecks.
You will learn how to perform supervised an unsupervised machine learning on massive datasets using the Machine Learning Library (MLlib).
In this course, as in the other ones in this MicroMasters program, you will gain hands-on experience using PySpark within the Jupyter notebooks environment.
Who should attend?
Prerequisites
The previous courses in the MicroMasters program: DSE200x,DSE210xand DSE220x
Course delivery details
This course is offered through The University of California, San Diego, a partner institute of EdX.
9-12 hours per week
Costs
- Verified Track -$350
- Audit Track - Free
Certification / Credits
What you'll learn
- Programming Spark using Pyspark
- Identifying the computational tradeoffs in a Spark application
- Performing data loading and cleaning using Spark and Parquet
- Modeling data through statistical and machine learning methods
Contact this provider
edX
edX For Business helps leading companies upskill their labor forces by making the world’s greatest educational resources available to learners across a wide variety of in-demand fields. edX For Business delivers high-quality corporate eLearning to train and engage your employees...