Search courses 👉
Professional Course

Big Data Analytics

edX, Online
Length
10 weeks
Price
199 USD
Next course start
Start anytime See details
Delivery
Self-paced Online
Length
10 weeks
Price
199 USD
Next course start
Start anytime See details
Delivery
Self-paced Online
Visit this course's homepage on the provider's site to learn more or book!

Course description

Big Data Analytics

Gain essential skills in today’s digital age to store, process and analyse data to inform business decisions.

In this course, part of the Big Data MicroMasters program, you will develop your knowledge of big data analytics and enhance your programming and mathematical skills. You will learn to use essential analytic tools such as Apache Spark and R.

Topics covered in this course include:

  • cloud-based big data analysis;
  • predictive analytics, including probabilistic and statistical models;
  • application of large-scale data analysis;
  • analysis of problem space and data needs.

By the end of this course, you will be able to approach large-scale data science problems with creativity and initiative.

Upcoming start dates

1 start date available

Start anytime

  • Self-paced Online
  • Online
  • English

Who should attend?

Prerequisites

Candidates pursuing the MicroMasters program are advised to completeProgramming for Data Science,Computational Thinking and Big Data&Big Data Fundamentalsbefore undertaking this course.

Training content

Simple linear regression

Fit a simple linear regression between two variables in R;Interpret output from R;Use models to predict a response variable;Validate the assumptions of the model.

Modelling data

Adapt the simple linear regression model in R to deal with multiple variables;Incorporate continuous and categorical variables in their models;Select the best-fitting model by inspecting the R output.

Many models

Manipulate nested dataframes in R;Use R to apply simultaneous linear models to large data frames by stratifying the data;Interpret the output of learner models.

Classification

Adapt linear models to take into account when the response is a categorical variable;Implement Logistic regression (LR) in R;Implement Generalised linear models (GLMs) in R;Implement Linear discriminant analysis (LDA) in R.

Prediction using models

Implement the principles of building a model to do prediction using classification;Split data into training and test sets, perform cross validation and model evaluation metrics;Use model selection for explaining data with models;Analyse the overfitting and bias-variance trade-off in prediction problems.

Getting bigger

Set up and apply sparklyr;Use logical verbs in R by applying native sparklyr versions of the verbs.

Supervised machine learning with sparklyr

Apply sparklyr to machine learning regression and classification models;Use machine learning models for prediction;Illustrate how distributed computing techniques can be used for “bigger” problems.

Deep learning

Use massive amounts of data to train multi-layer networks for classification;Understand some of the guiding principles behind training deep networks, including the use of autoencoders, dropout, regularization, and early termination;Use sparklyr and H2O to train deep networks.

Deep learning applications and scaling up

Understand some of the ways in which massive amounts of unlabelled data, and partially labelled data, is used to train neural network models;Leverage existing trained networks for targeting new applications;Implement architectures for object classification and object detection and assess their effectiveness.

Bringing it all together

Consolidate your understanding of relationships between the methodologies presented in this course, theirrelative strengths, weaknesses and range of applicability of these methods.

Course delivery details

This course is offered through University of Adelaide, a partner institute of EdX.

8-10 hours per week

Costs

  • Verified Track -$199
  • Audit Track - Free

Certification / Credits

What you'll learn

  • How to develop algorithms for the statistical analysis of big data;
  • Knowledge of big data applications;
  • How to use fundamental principles used in predictive analytics;
  • Evaluate and apply appropriate principles, techniques and theories to large-scale data science problems.

Contact this provider

Contact course provider

Fill out your details to find out more about Big Data Analytics.

  Contact the provider

  Get more information

  Register your interest

Country *

reCAPTCHA logo This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
edX
141 Portland Street
02139 Cambridge Massachusetts

edX

edX For Business helps leading companies upskill their labor forces by making the world’s greatest educational resources available to learners across a wide variety of in-demand fields. edX For Business delivers high-quality corporate eLearning to train and engage your employees...

Read more and show all training delivered by this supplier

Ads